DESEMPENHO AGRONÔMICO DE ACESSOS DE MANDIOCA COLORIDOS **EM DUAS SAFRAS NA EMBRAPA CERRADOS**

Josefino de FREITAS FIALHO¹, Eduardo ALANO VIEIRA¹,

Luiz Joaquim CASTELO BRANCO CARVALHO², Marilia SANTOS SILVA¹,

Karina NASCIMENTO da SILVA¹, Mário OZEAS SAMPAIO dos SANTOS FILHO¹

RESUMO: O objetivo do trabalho foi caracterizar agronomicamente acessos de mandioca com coloração da polpa da raiz creme, amarela e rosada na Embrapa Cerrados. O experimento foi conduzido em área experimental da Embrapa Cerrados no município de Planaltina-DF. O delineamento experimental foi o de blocos casualizados com três repetições, onde foram avaliados quanto a seis caracteres agronômicos, treze acessos de mandioca, sendo um com coloração da polpa da raiz creme, quatro com coloração da polpa da raiz rosada e oito com coloração da polpa da raiz amarela. Os resultados mostraram que existe variabilidade entre os acessos coloridos avaliados, que dentre os acesos biofortificados nenhum apresenta potencial imediato de cultivo na região do Cerrado e que é necessária à realização de melhoramento genético, visando à transferência dos genes que controlam a síntese e o acúmulo de betacaroteno e/ou licopeno nas raízes para constituições genéticas adaptadas as condições do Cerrado.

Palavras-chave: Manihot esculenta Crantz, variabiliade genética, biofortificação, recursos genéticos, melhoramento genético.

SUMMARY: AGRONOMIC PERFORMANCE OF SUGARY CASSAVA ACESS ANALYSED IN TWO HARVES IN EMBRAPA CERRADOS. The aim of this work was to agronomically characterize cassava accessions with root pulp yellowish, yellow and pinkish colour at Embrapa Cerrados. The experiment was carried out in experimental area at Embrapa Cerrados in the municipality of Planaltina-DF. The experimental setup was in ramdom blocks with three replicates, where six agronomic characters, 13 cassava accessions, being one with root pulp yellowish colour, four with root pulp pinkish colour and eight wiht root pulp yellow colour, were evaluated. The results demonstrated that there is variability among the coloured root accessions evaluated, that among these biofortified accessions none

carvalho@cenargen.embrapa.br.

¹Embrapa Cerrados, BR 020, Km 18, Caixa Postal 08223, 73010-970 Planaltina, DF. E-mail: vieiraea@cpac.embrapa.br, josefino@cpac.embrapa.br, marilia@cpac.embrapa.br, mario.sampaio@cpac.embrapa.br, karina.silva@cpac.embrapa.br. Embrapa Cenargen, Parque Estação Biológica, Av. W5 Norte, CEP 70770-900 Brasilia, DF. E-mail:

presented immediate potential for cultivation within the Cerrado Region, and that genetic breeding is necessary in order to transfer the genes that control the synthesis and accumulation of betacarotene and/or lycopene in roots to genetic constitutions adapted to the Cerrado conditions.

Keywords: *Manihot esculenta* Crantz, genetic variability, biofortification, genetic resources, plant breeding.

INTRODUÇÃO

A mandioca sempre foi cultivada em razão de suas raízes tuberosas ricas em amido, porém pobres em proteínas e vitaminas. Nos últimos anos as pesquisas com a cultura tomaram um novo rumo, uma vez que foi descoberto que as raízes de mandioca também podem constituir-se em uma fonte potencial de carotenóides, betacaroteno, precursor da vitamina A, nas raízes de coloração amarela e de licopeno, nas raízes de coloração rosada (Carvalho et al., 2000). Dessa forma, a cultura vem destacando-se dentre os vegetais como uma importante fonte de vitamina A, vitamina associada a diversos fatores de proteção a saúde humana, dentre eles a cegueira noturna e de licopeno que é um antioxidante que pode prevenir o câncer.

Entretanto, para que a população possa usufruir desse alimento rico em vitaminas é necessário que os genes que controlam esse caráter sejam transferidos para variedades adaptadas e que se conheça o potencial produtivo dos acessos disponíveis na biodiversidade brasileira. Assim um programa de melhoramento genético voltado à geração variedades de mandioca de mesa biofortificadas deve focar na seleção de genótipos com baixo teor de HCN nas raízes, elevada produtividade de raízes, resistência a pragas e doenças, baixa deterioração pós-colheita, qualidades culinárias nas raízes (baixo tempo para cocção, alta qualidade de massa, sabor agradável), altos teores de betacaroteno e/ou licopeno nas raízes, entre outras.

O objetivo do trabalho foi caracterizar agronomicamente acessos de mandioca com coloração da polpa da raiz creme, amarela e rosada na Embrapa Cerrados.

MATERIAL E MÉTODOS

O experimento foi conduzido por duas safras, entre outubro 2006 e outubro 2007 e outubro 2007 e outubro 2008, em área experimental da Embrapa Cerrados no município de Planaltina-DF. O delineamento experimental foi o de blocos casualizados com três repetições, onde foram avaliados treze acessos de mandioca mantidos no Banco Regional de Germoplasma de Mandioca do Cerrado (BGMC), sendo um acesso com coloração da polpa da raiz creme, quatro com coloração da polpa da

raiz rosada e oito com coloração da polpa da raiz amarela, listados na Tabela 1. Cada parcela foi composta por 4 linhas com 10 plantas em espaçamento de 1,20 m entre linhas e 0,80 m entre fileiras, sendo a área útil de cada parcela constituída pelas 16 plantas centrais.

Tabela 1. Acessos de mandioca coloração da polpa da raiz creme, amarela e rosada analisados, nomes comuns, coloração da polpa da raiz (CPR) e teor de HCN nas raízes em ppm (HCN).

Acessos	Nome comum	CPR	HCN
BGMC 1415	Vermelha	rosada	25
BGMC 1228	Mirassol	rosada	25
BGMC 1222	Colorada	rosada	25
BGMC 1229	Vermelha Omar	rosada	40
BGMC 1218	Klainasik	amarela	85
BGMC 1221	Xingu	amarela	115
BGMC 1231	Não possui denominação	amarela	40
BGMC 1398	BRS Dourada	amarela	40
BGMC 1223	Oricuri	amarela	115
BGMC 1224	Surubim	amarela	115
BGMC 1226	AC Vermelha	amarela	115
BGMC 1227	Pretinha	amarela	115
BGMC 982	lapar 19/Pioneira	creme	15

⁼ aferido no momento da colheita por meio do método qualitativo descrito por Willians e Edwards (1980).

A seleção do material para o plantio bem como os tratos culturais seguiram as recomendações do sistema de produção de mandioca para a região do Cerrado (Souza e Fialho, 2003). Os acesos foram aferidos quanto aos caracteres: i) altura da planta em m (AP); ii) altura da primeira ramificação em m (APR); iii) peso da parte aérea sem a cepa em kg ha⁻¹ (PPA); iv) peso da cepa em kg ha⁻¹ (PC); v) produtividade de raízes em kg ha⁻¹ (PR), vi) porcentagem de amido nas raízes por meio do método da balança hidrostática (AM) e tempo para a cocção em minutos (TC). Os dados obtidos foram submetidos à análise de variância e as médias foram comparadas por meio do teste de comparação de médias de Scott e Knott a 5% de probabilidade de erro. As análises estatísticas foram realizadas com auxílio do programa Genes (Cruz et al., 2001).

RESULTADOS E DISCUSSÃO

Os resultados da análise de variância evidenciaram a existência de diferenças significativas entre os acessos quanto a todos os caracteres avaliados, revelando a existência de ampla variabilidade (Tabela 2). A existência de elevada variabilidade fenotípica e genética em mandioca já era esperada e foi relatada em diversos trabalhos (Zacarias et al., 2004; Vieira et al., 2008). Entretanto, o caráter TC não foi considerado na análise de variância em razão de na safra 2007/2008, apenas o acesso BGMC 982 ter cozinhado.

Os resultados revelaram também a existência de diferenças significativas entre as safras, demonstrando a existência de influência do ambiente na manifestação dos caracteres aferidos. Bem como a existência de interação significativa entre os acessos e as safras, para todos os caracteres

aferidos, indicando que os acessos apresentam respostas diferenciadas em razão do efeito safra. Os coeficientes de variação das análises de variância variaram de 3,13% para o caráter AM e de 13,43% para a APR, conferindo elevada precisão experimental aos ensaios (Tabela 2). A existência de diferenças entre os acessos, entre as safras e a existência de interação significativa entre acessos e safras, deve-se principalmente a diferenças genéticas entre acessos e variações de clima entre safras bem como a diferentes níveis de resistência a pragas e doenças.

Tabela 2. Resumo da análise de variância dos caracteres altura da planta em metros (AP), altura da primeira ramificação em metros (APR), peso da cepa em kg ha⁻¹ (PC), peso da parte aérea sem a cepa em kg ha⁻¹ (PPA), produtividade de raízes em kg ha⁻¹ (PR) e porcentagem de amido nas raízes por meio do método da balança hidrostática (AM) avaliados em 13 acessos de mandioca.

Fonto do variação	CI	Quadrado médio					
Fonte de variação	GL	AP	APR	PPA	PC	PR	AM
Acessos (A)	12	0,54	0,47*	355800245	1344701 [*]	252672842	84,93
Safras (S)	1	1,92*	0,29*	1835362278 [*]	10023330*	134161576 [*]	9,28*
Interação (A x S)	12	0,12*	0,04*	82889099 [*]	767062 [*]	27961904 [*]	33,87*
Resíduo	48	0,01	0,01	1523346	65524	952627	0,60
Média		1,89	0,61	16672	3061	9397	24,69
CV (%)		6,10	13,43	7,40	8,36	10,39	3,13

^{*=} significativo a 5% de probabilidade de erro pelo teste F.

Tabela 3. Comparação de médias dos caracteres altura da planta em metros (AP), altura da primeira ramificação em metros (APR) e porcentagem de amido nas raízes por meio do método da balança hidrostática (AM) avaliados em 13 acessos de mandioca por duas safras.

Acessos	AP	ÁP	APR	APR	ΑM	AM
	2006/2007	2007/2008	2006/2007	2007/2008	2006/2007	2007/2008
BGMC 982	1,73 Bbc	2,17 Abc	0,90 Aab	0,85 Aab	28,13 Bb	31,78 Aab
BGMC 1221	1,93 Bb	2,60 Aa	0,30 Acd	0,21 Ae	25,10 Bcde	29,92 Abc
BGMC 1398	1,60 Bc	2,22 Abc	1,03 Aab	0,76 Babcd	23,74 Aefg	23,95 Ae
BGMC 1222	1,10 Bd	1,60 Ae	0,27 Ad	0,23 Ae	23,55 Aefg	19,36 Bf
BGMC 1218	1,50 Ac	1,67 Ade	0,47 Acd	0,55 Ad	22,83 Bfg	27,10 Ad
BGMC 1223	1,57 Bc	2,10 Ac	0,53 Ac	0,61 Acd	24,30 Bdefg	29,40 Ac
BGMC 1224	1,97 Bb	2,23 Abc	1,07 Aa	0,97 Aa	26,78 Abc	23,41 Be
BGMC 1226	2,63 Aa	2,43 Bab	0,80 Ab	0,23 Be	26,40 Abcd	16,68 Bg
BGMC 1227	1,60 Bc	1,92 Acde	0,40 Acd	0,30 Ae	31,70 Ba	33,95 Aa
BGMC 1228	1,97 Ab	1,97 Acd	0,93 Aab	0,80 Aabc	22,40 Ag	22,74 Ae
BGMC 1231	1,50 Bc	2,13 Abc	0,87 Aab	0,71 Bbcd	23,55 Afg	22,78 Ae
BGMC 1415	1,77 Bbc	2,00 Ac	0,93 Aab	0,73 Babcd	22,32 Ag	16,88 Bg
BGMC 1229	1,70 Abc	1,62 Ae	0,27 Ad	0,27 Ae	24,71 Acdf	16,58 Bfg
Média	1,74	2,05	0,67	0,56	25,04	24,19
_Amplitude [#]	1,53	1,00	0,79	0,76	9,38	17,27

⁼ médias seguidas pela mesma letra maiúscula na horizontal e minúscula na vertical não diferem entre si, a 5% de probabilidade de erro, pelo teste de Tukey;

Quando da recomendação de uma variedade biofortificada para o plantio de forma comercial, os principais caracteres a serem considerados são, baixos teores de HCN nas raízes, baixo TC e elevada PR. Dentre os acessos avaliados, apenas os de polpa amarela BGMC 1221, BGMC 1223, BGMC 1224, BGMC 1226 e BGMC 1227, revelaram elevados teores de HCN nas raízes (> 100 ppm) e portanto devem ser processados antes do consumo na alimentação e são classificados como

^t = diferença entre a maior e a menor média.

mandiocas bravas (Tabela 1). O caráter TC é importante para acessos de mesa (HCN < 100 ppm) uma vez que esta intimamente relacionado com a qualidade culinária e logicamente é importante também que o acesso apresente elevada PR. Sendo assim, uma boa variedade de mandioca biofortificada deve aliar elevada produtividade de raízes, tempo para cocção inferior a 30 min e cor da polpa da raiz creme, amarela ou rosada. O acesso que apresentou o menor TC foi o acesso BGMC 982 que dentro do grupo de acessos avaliados é o único já recomendado para o cultivo no DF. No grupo dos acessos biofortificados na safra 2007/2008 nenhum apresentou TC inferior a 40 minutos. Assim fica claro que em relação ao TC nenhum acesso biofortificado testado apresenta potencial para o cultivo comercial no DF quanto a esse caráter. O acesso que evidenciou as maiores produtividades de raízes nas safras 2006/2007 (24373 kg ha⁻¹) e 2007/2008 (27565 kg ha⁻¹) foi o acesso BGMC 982, que já recomendado para o cultivo no DF, enquanto que no grupo de acessos biofortificados avaliados nenhum apresentou elevada PR (Tabela 4).

Tabela 4. Comparação de médias dos caracteres peso da cepa em kg ha⁻¹ (PC), peso da parte aérea sem a cepa em kg ha⁻¹ (PPA) e produtividade de raízes em kg ha⁻¹ (PR) avaliados em oito acessos de mandioca por duas safras.

Acessos	PC	PC	PPA	PPA	PR	PR
	2006/2007	2007/2008	2006/2007	2007/2008	2006/2007	2007/2008
BGMC 982	2775 Bbcd	3825 Abc	9433 Bde	21663 Acde	24373 Ba	27565 Aa
BGMC 1221	2680 Bcd	3741 Abcd	12078 Bcd	22808 Acd	4808 Bfg	9313 Ade
BGMC 1398	3101 Aabc	3283 Acde	10474 Bde	17744 Afg	13186 Bb	15643 Abc
BGMC 1222	2575 Bcd	3270 Acde	10605 Bde	15323 Ag	8328 Bcde	17527 Ab
BGMC 1218	2756 Abcd	3031 Adef	5197 Bg	9523 Ah	2202 Bgh	8023 Aef
BGMC 1223	1677 Be	4247 Aab	7194 Befg	30425 Ab	3061 Bgh	14159 Ac
BGMC 1224	2682 Bcd	3349 Acd	15380 Abc	15793 Ag	10625 Abc	6525 Bf
BGMC 1226	3505 Ba	4675 Aa	23724 Ba	51810 Aa	6421 Aef	3561 Bg
BGMC 1227	1795 Be	2463 Af	5895 Bfg	19674 Adef	7680 Ade	7567 Aef
BGMC 1228	3446 Aab	3466 Acd	18200 Ab	23244 Ac	963 Ah	1617 Ag
BGMC 1231	3440 Aab	3193 Acde	8476 Befg	11670 Ah	12345 Bb	15157 Abc
BGMC 1415	3389 Acde	2578 Aef	9014 Bdfg	18449 Aefg	1555 Ah	1732 Ag
BGMC 1229	2314 Bde	3334 Acd	15000 Bbc	21657 Acde	9554 Acd	10812 Ad
Média	2780	3420	11590	21522	8085	10708
Amplitude [#]	1828	2208	21527	13718	22171	25833

⁼ médias seguidas pela mesma letra maiúscula na horizontal e minúscula na vertical não diferem entre si, a 5% de probabilidade de erro, pelo teste de Tukey.

= diferença entre a maior e a menor média.

Assim é possível afirmar que, no grupo dos acessos biofortificados (cor da polpa amarela ou rosada) avaliados na Embrapa Cerrados, nenhum apresenta desempenho agronômico que permita o seu cultivo de forma comercial na região e que assim é necessário que esses acessos sejam submetidos ao melhoramento genético. Visando à transferência desses genes especiais que controlam a síntese e/ou acúmulo de betacaroteno e licopeno nas raízes para constituições genéticas adaptadas as condições do Cerrado e mais produtivas. Para que dessa forma o sistema de produção de mandiocas de mesa biofortificadas seja viabilizado na região.

CONCLUSÕES

Os resultados mostraram que existe variabilidade fenotípica entre os acessos com coloração da polpa creme, amarela e rosada avaliados, que dentre os acesos biofortificados avaliados nenhum apresenta potencial imediato de cultivo na região do Cerrado e que é necessária à realização de melhoramento genético visando à transferência desses genes que controlam a presença de betacaroteno e licopeno nas raízes para constituições genéticas adaptadas as condições do Cerrado.

Agradecimentos

Os autores agradecem a Embrapa, Fundação Banco do Brasil, CNPq e ao Programa Biodiversidade Brasil-Itália pelo apoio financeiro.

REFERÊNCIAS BIBLIOGRÁFICAS

CARVALHO, L.J.C.B.; CABRAL, G.B.; CAMPOS, L. Raiz de reserva de mandioca: um sistema biológico de múltipla utilidade. Brasília: Embrapa Recursos genéticos e Biotecnologia, 2000. 16p. CRUZ, C.D. Programa genes: aplicativo computacional em genética e estatística. Viçosa: UFV, 2001. 648p.

SOUZA, L.S.; FIALHO, J.F. **Sistema de produção de mandioca para a região do cerrado**. Cruz da Almas: CNPMF, 2003. 61p.

VIEIRA, E.A., FIALHO, J.F.; FALEIRO, F.G.; BELLON, G.; FONSECA, K.G.; CARVALHO, L.J.C.B.; SILVA, M.S.; MORAES, S.V.P.; FILHO, M.O.S.S., SILVA, K.N. Divergência genética entre acessos açucarados e não açucarados de mandioca. **Pesquisa Agropecuária Brasileira**., v.43, p.1707 - 1715, 2008.

WILLIAMS, H.J.; EDWARDS, T.G. Estimation of Cyanide with Alkaline Picrate. **Journal of the Science of Food and Agriculture**, v.31, p.15-22, 1980.

ZACARIAS, A.M.; BOTHA, A.M.; LABUSCHAGNE, M.T.; BENESI, I.R.M. Characterization and genetic distance analysis of cassava (*Manihot esculenta* Crantz) germplasm form Mozambique using RAPD fingerprinting. **Euphytica**, v.138, p.49-53, 2004.